

# Technical Data Sheet Biome3D

### **General Information**

3D Fuel<sup>™</sup> Biome3D is a biodegradable thermoplastic that has similar characteristics as ABS. It is flexible, malleable, and smooth to the touch, but unlike ABS, Biome3D does not experience much warping and it prints with low odor.

Biome3D was developed by one of the UK's leading developers of intelligent, natural plastics: Biome Bioplastics. Made from plant starches, it has the value of being renewable with the benefits of oil-based filaments.

| Resin Typical Material Properties |           |         |       |
|-----------------------------------|-----------|---------|-------|
| Property                          | Standard* | Biome3D | ABS** |
| Maximum Tensile Strength, MPa     | ASTM D638 | 35      | 37    |
| Tensile Strength at Yield, MPa    | ASTM D638 | 26      | -     |
| Tensile Modulus, GPa              | ASTM D638 | 2.0     | 2.1   |
| Tensile Elongation, %             | ASTM D638 | 6.2     | -     |
| Notched Impact, J/m               | ASTM D256 | 29      | -     |

<sup>\*</sup>All test specimen were 3D printed to more accurately represent expected usage

### **Printing Information**

Printing with Biome3D will be similar to experiences printing with PLA. A print temperature of 190 to 210 degrees Celsius is our recommended starting point. Biome3D prints with little to no warping on a non-heated build surface with a raft. If your printer does have a heated bed, setting it to around 50 degrees Celsius may help with first layer adhesion when printing without a raft. Print speed should remain between 50 and 100 mm/s and should be varied based on part size. Clean the nozzle after every use.

Biome3D has high interlayer adhesion which makes for a print that is less likely to delaminate. Because of this, you may notice that when printing with a raft, the raft may be more difficult to remove than you are used to. This can be taken care of by increasing the distance between the last layer of the raft and the first layer of the part. Most slicing software includes this feature (e.g. MakerBot Desktop: Raft-Model Spacing, Cura: Airgap, Simplify3D: Separation Distance).

#### **Storage**

Like all of our filaments, Biome3D filament comes in a vacuum-sealed resealable bag with a pack of silica gel. In order to prevent the filament from absorbing moisture from the air, when the spool is not in use, place it back in the bag with a silica gel pack and seal it.

## **Values**

Benefits of using Biome3D include reduced brittleness, increased flexibility, great layer adhesion, no cracking, no odor, and low temperature printing. The surface finish of Biome3D is silky smooth and is easier to sand than PLA. One thing to note about Biome3D is that because of its lower print temperature, it does have a lower heat resistance than ABS.



<sup>\*\*</sup> For comparison